Join our list for notifications and early access to events
Today we’re joined by Dan Fu, a PhD student at Stanford University. In our conversation with Dan, we discuss the limitations of state space models in language modeling and the search for alternative building blocks that can help increase context length without being computationally infeasible. Dan walks us through the H3 architecture and Flash Attention technique, which can reduce the memory footprint of a model and make it feasible to fine-tune. We also explore his work on improving language models using synthetic languages, the issue of long sequence length affecting both training and inference in models, and the hope for finding something sub-quadratic that can perform language processing more effectively than the brute force approach of attention.
Qualcomm AI Research is dedicated to advancing AI to make its core capabilities — perception, reasoning, and action — ubiquitous across devices. Their work makes it possible for billions of users around the world to have AI-enhanced experiences on devices powered by Qualcomm Technologies. To learn more about what Qualcomm Technologies is up to on the research front, visit twimlai.com/qualcomm.