Join our list for notifications and early access to events
In this episode, Hung Bui, Technology Vice President at Qualcomm, joins us to explore the latest high-efficiency techniques for running generative AI, particularly diffusion models, on-device. We dive deep into the technical challenges of deploying these models, which are powerful but computationally expensive due to their iterative sampling process. Hung details his team's work on SwiftBrush and SwiftEdit, which enable high-quality text-to-image generation and editing in a single inference step. He explains their novel distillation framework, where a multi-step teacher model guides the training of an efficient, single-step student model. We explore the architecture and training, including the use of a secondary 'coach' network that aligns the student's denoising function with the teacher's, allowing the model to bypass the iterative process entirely. Finally, we discuss how these efficiency breakthroughs pave the way for personalized on-device agents and the challenges of running reasoning models with techniques like inference-time scaling under a fixed compute budget.
Qualcomm AI Research is dedicated to advancing AI to make its core capabilities — perception, reasoning, and action — ubiquitous across devices. Their work makes it possible for billions of users around the world to have AI-enhanced experiences on devices powered by Qualcomm Technologies. To learn more about what Qualcomm Technologies is up to on the research front, visit twimlai.com/qualcomm.