Modeling Human Cognition with RNNs and Curriculum Learning with Kanaka Rajan

EPISODE 524
|
OCTOBER 4, 2021
Watch
Play
Don't Miss an Episode!  Join our mailing list for episode summaries and other updates.

About this Episode

Today we're joined by Kanaka Rajan, an assistant professor at the Icahn School of Medicine at Mt Sinai. Kanaka, who is a recent recipient of the NSF Career Award, bridges the gap between the worlds of biology and artificial intelligence with her work in computer science. In our conversation we explore how she builds "lego models" of the brain that mimic biological brain functions, then reverse engineers those models to answer the question "do these follow the same operating principles that the biological brain uses?" We also discuss the relationship between memory and dynamically evolving system states, how close we are to understanding how memory actually works, how she uses RNNs for modeling these processes, and what training and data collection looks like. Finally, we touch on her use of curriculum learning (where the task you want a system to learn increases in complexity slowly), and of course, we look ahead at future directions for Kanaka's research.

About the Guest

Kanaka Rajan

Icahn School of Medicine

Connect with Kanaka

Resources

Related Topics