Are LLMs Good at Causal Reasoning? with Robert Osazuwa Ness

Play Video

Join our list for notifications and early access to events

About this Episode

Today we’re joined by Robert Osazuwa Ness, a senior researcher at Microsoft Research, Professor at Northeastern University, and Founder of In our conversation with Robert, we explore whether large language models, specifically GPT-3, 3.5, and 4, are good at causal reasoning. We discuss the benchmarks used to evaluate these models and the limitations they have in answering specific causal reasoning questions, while Robert highlights the need for access to weights, training data, and architecture to correctly answer these questions. The episode discusses the challenge of generalization in causal relationships and the importance of incorporating inductive biases, explores the model's ability to generalize beyond the provided benchmarks, and the importance of considering causal factors in decision-making processes. 

Connect with Robert Osazuwa
Read More

Related Episodes

Related Topics

More from TWIML

Leave a Reply

Your email address will not be published. Required fields are marked *