In this episode, we’re joined by Romer Rosales, Director of AI at LinkedIn.
Subscribe: iTunes / Google Play / Spotify / RSS
We begin with a discussion of graphical models and approximate probability inference, and he helps me make an important connection in the way I think about that topic. We then review some of the applications of machine learning at LinkedIn, and how what Romer calls their ‘holistic approach’ guides the evolution of ML projects at LinkedIn. This leads us into a really interesting discussion about problem formulation and selecting the right objective function for a given problem. We then talk through some of the tools they’ve built to scale their data science efforts, including large-scale constrained optimization solvers, online hyperparameter optimization and more. This was a really fun conversation, that I’m sure you’ll enjoy!
TWIML Online Meetup Update
Tomorrow, June 12th at 5 pm US Pacific Time. Kelvin Ross will be reviewing the paper Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks, which is work by researchers in Andrew Ng’s lab at Stanford. For more information visit twimlai.com/meetup.
About Romer
Mentioned in the Interview
- The LinkedIn Engineering page
- The Economic Graph microsite (for big-picture trends research with the World Bank, etc.)
- The Economic Graph Research Project (for academic projects)
–Email Volume Optimization at LinkedIn - Join us in celebrating our 2nd Birthday!
- TWIML Presents: Series page
- TWIML Events Page
- TWIML Meetup
- TWIML Newsletter
“More On That Later” by Lee Rosevere licensed under CC By 4.0
Leave a Reply