Spatiotemporal Data Analysis with Rose Yu

EPISODE 508
|
AUGUST 9, 2021
Watch
Play
Don't Miss an Episode!  Join our mailing list for episode summaries and other updates.

About this Episode

Today we're joined by Rose Yu, an assistant professor at the Jacobs School of Engineering at UC San Diego. Rose's research focuses on advancing machine learning algorithms and methods for analyzing large-scale time-series and spatial-temporal data, then applying those developments to climate, transportation, and other physical sciences. We discuss how Rose incorporates physical knowledge and partial differential equations in these use cases and how symmetries are being exploited. We also explore their novel neural network design that is focused on non-traditional convolution operators and allows for general symmetry, how we get from these representations to the network architectures that she has developed and another recent paper on deep spatio-temporal models.

About the Guest

Rose Yu

University of California, San Diego - Jacobs School of Engineering

Connect with Rose

Resources