Optical Flow Estimation, Panoptic Segmentation, and Vision Transformers with Fatih Porikli

EPISODE 579
WATCH
Play Video

Join our list for notifications and early access to events

About this Episode

Today we kick off our annual coverage of the CVPR conference joined by Fatih Porikli, Senior Director of Engineering at Qualcomm AI Research. In our conversation with Fatih, we explore a trio of CVPR-accepted papers, as well as a pair of upcoming workshops at the event. The first paper, Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation, presents a novel framework to integrate semantic and instance contexts for panoptic segmentation. Next up, we discuss Imposing Consistency for Optical Flow Estimation, a paper that introduces novel and effective consistency strategies for optical flow estimation. The final paper we discuss is IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes, which proposes a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness, and lighting from a single image of an indoor scene. For each paper, we explore the motivations and challenges and get concrete examples to demonstrate each problem and solution presented.

Connect with Fatih
Read More

Thanks to our sponsor Qualcomm AI Research

Qualcomm AI Research is dedicated to advancing AI to make its core capabilities — perception, reasoning, and action — ubiquitous across devices. Their work makes it possible for billions of users around the world to have AI-enhanced experiences on devices powered by Qualcomm Technologies. To learn more about what Qualcomm Technologies is up to on the research front, visit twimlai.com/qualcomm.

Qualcomm Technologies Logo

Related Episodes

Related Topics

More from TWIML

3 Responses

Leave a Reply

Your email address will not be published. Required fields are marked *