Join our list for notifications and early access to events
Today we’re joined by Arash Behboodi, a machine learning researcher at Qualcomm Technologies. In our conversation with Arash, we explore his paper Equivariant Priors for Compressed Sensing with Unknown Orientation, which proposes using equivariant generative models as a prior means to show that signals with unknown orientations can be recovered with iterative gradient descent on the latent space of these models and provide additional theoretical recovery guarantees. We discuss the differences between compression and compressed sensing, how he was able to evolve a traditional VAE architecture to understand equivalence, and some of the research areas he’s applying this work, including cryo-electron microscopy. We also discuss a few of the other papers that his colleagues have submitted to the conference, including Overcoming Oscillations in Quantization-Aware Training, Variational On-the-Fly Personalization, and CITRIS: Causal Identifiability from Temporal Intervened Sequences.
Qualcomm AI Research is dedicated to advancing AI to make its core capabilities — perception, reasoning, and action — ubiquitous across devices. Their work makes it possible for billions of users around the world to have AI-enhanced experiences on devices powered by Qualcomm Technologies. To learn more about what Qualcomm Technologies is up to on the research front, visit twimlai.com/qualcomm.