Channel Gating for Cheaper and More Accurate Neural Nets with Babak Ehteshami Bejnordi

EPISODE 385
|
JUNE 22, 2020
Watch
Banner Image: Babak Ehteshami Bejnordi - Podcast Interview
Don't Miss an Episode!  Join our mailing list for episode summaries and other updates.

About this Episode

Today we're joined by Babak Ehteshami Bejnordi, a Research Scientist at Qualcomm. Babak works closely with former guest Max Welling and is currently focused on conditional computation, which is the main driver for today's conversation. We dig into a few papers in great detail including one from this year's CVPR conference, Conditional Channel Gated Networks for Task-Aware Continual Learning. We also discuss the paper TimeGate: Conditional Gating of Segments in Long-range Activities, and another paper from this year's ICLR conference, Batch-Shaping for Learning Conditional Channel Gated Networks. We cover how gates are used to drive efficiency and accuracy, while decreasing model size, how this research manifests into actual products and more!

About the Guest

Connect with Babak

Resources

Related Topics