Applications of Variational Autoencoders and Bayesian Optimization with José Miguel Hernández Lobato

EPISODE 510
|
AUGUST 16, 2021
Watch
Play
Don't Miss an Episode!  Join our mailing list for episode summaries and other updates.

About this Episode

In this episode, we're joined by Jos� Miguel Hernández-Lobato, a university lecturer in machine learning at the University of Cambridge. In our conversation with Miguel, we explore his work at the intersection of Bayesian learning and deep learning. We discuss how he's been applying this to the field of molecular design and discovery via two different methods, with one paper searching for possible chemical reactions, and the other doing the same, but in 3D and in 3D space. We also discuss the challenges of sample efficiency, creating objective functions, and how those manifest themselves in these experiments, and how he integrated the Bayesian approach to RL problems. We also talk through a handful of other papers that Miguel has presented at recent conferences, which are all linked below.

About the Guest

José Miguel Hernández Lobato

University of Cambridge, UK.

Connect with José Miguel

Resources